Publications

Research work and relevant papers by our team

M²LInES research and other relevant publications

If you are interested in understanding how M²LInES is using machine learning to improve climate models, we have developed an educational JupyterBook Learning Machine Learning for Climate modeling with Lorenz 96 . This JupyterBook describes the key research themes in M²LInES, through the use of a simple climate model and machine learning algorithms. You can run the notebooks yourself, contribute to the development of the JupyterBook or let us know what you think on GitHub.

You can also check all our publications on our Google Scholar profile

DOI icon M²LInES funded research

2024

DOI icon William E. Chapman and Judith Berner
A State-Dependent Model-Error Representation for Online Climate Model Bias Correction
Preprint in ESS DOI:10.22541/essoar.172526800.05354621/v2

DOI icon John Schreck, Yingkai Sha, William Chapman, Dhamma Kimpara, Judith Berner, Seth McGinnis, Arnold Kazadi, Negin Sobhani, Ben Kirk, David John Gagne II
Community Research Earth Digital Intelligence Twin (CREDIT)
ArXiv 2024 DOI: 10.48550/arXiv.2411.07814

DOI icon Pavel Perezhogin, Cheng Zhang, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
A Stable Implementation of a Data-Driven Scale-Aware Mesoscale Parameterization
JAMES DOI: 10.1029/2023MS004104

DOI icon Brandon G Reichl, Andrew T. Wittenberg, Stephen M Griffies, Alistair Adcroft
Improved Equatorial Upper Ocean Vertical Mixing in the NOAA/GFDL OM4 Model
Earth and Space Science DOI:10.1029/2023EA003485

DOI icon Joan Bruna, Benjamin Peherstorfer, Eric Vanden-Eijnden
Neural Galerkin schemes with active learning for high-dimensional evolution equations
Journal of Computational Physics DOI:10.1016/j.jcp.2023.112588

Dmitrii Kochkov, ... Stephan Hoyer
Neural general circulation models for weather and climate
Nature 2024 DOI: 10.1038/s41586-024-07744-y

DOI icon Tom Beucler, Arthur Grundner, Sara Shamekh, Peter Ukkonen, Matthew Chantry, Ryan Lagerquist
Distilling Machine Learning's Added Value: Pareto Fronts in Atmospheric Applications
ArXiv 2024 DOI: 10.48550/arXiv.2408.02161

DOI icon William Gregory, Ronald MacEachern, So Takao, Isobel R. Lawrence, Carmen Nab, Marc Peter Deisenroth, Michel Tsamados
Scalable interpolation of satellite altimetry data with probabilistic machine learning
Nature Communications 2024 DOI: 10.1038/s41467-024-51900-x

DOI icon Veronika Eyring, ... Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Nature Climate Change 2024 DOI: 10.1038/s41558-024-02095-y

Jerry Lin, Sungduk Yu, Liran Peng, Tom Beucler, Eliot Wong-Toi, Zeyuan Hu, Pierre Gentine, Margarita Geleta, Michael S Pritchard
Sampling Hybrid Climate Simulation at Scale to Reliably Improve Machine Learning Parameterization
Preprint submitted to JAMES DOI:10.22541/essoar.172072688.86581349/v1

DOI icon Surya Dheeshjith, Adam Subel, Shubham Gupta, Alistair Adcroft, Carlos Fernandez-Granda, Julius Busecke, Laure Zanna
Transfer Learning for Emulating Ocean Climate Variability across CO2 forcing
Preprint accepted at ICML 2024 ML4ESM DOI: 10.48550/arXiv.2405.18585

Justin Finkel and Paul A. O’Gorman
Bringing Statistics to Storylines: Rare Event Sampling for Sudden, Transient Extreme Events
JAMES 2024 DOI: 10.1029/2024MS004264

David Bonan, Andrew Thompson, Tapio Schneider, Laure Zanna, Kyle Armour, Shantong Sun
Constraints imply limited future weakening of Atlantic meridional overturning circulation
Preprint under review at Nature Portfolio DOI: doi.org/10.21203/rs.3.rs-4456168/v1

DOI icon Lorenzo Zampieri, David Clemens-Sewall, Anne Sledd, Nils Hutter, Marika Holland
Modeling the Winter Heat Conduction Through the Sea Ice System During MOSAiC
Geophysical Research Letters 2024 DOI: 10.1029/2023GL106760

DOI icon William Gregory, Ronald MacEachern, So Takao, Isobel Lawrence, Carmen Nab, Marc Deisenroth, Michel Tsamados
Scalable interpolation of satellite altimetry data with probabilistic machine learning
Nature Comms. 2024 DOI: 10.21203/rs.3.rs-4209064/v1

DOI icon Adam Subel, Laure Zanna
Building Ocean Climate Emulators
ICLR 2024 Workshop: Tackling Climate Change with Machine Learning. DOI: 10.48550/arXiv.2402.04342

DOI icon William Gregory, Mitchell Bushuk, Yongfei Zhang, Alistair Adcroft, Laure Zanna
Machine Learning for Online Sea Ice Bias Correction Within Global Ice-Ocean Simulations
Geophysical Research Letters 2024. DOI: 10.1029/2023GL106776

DOI icon Fabrizio Falasca, Pavel Perezhogin, Laure Zanna
Data-driven framework for dimensionality reduction and causal inference in climate fields
APS Physics Review E 2024 DOI: 10.1103/PhysRevE.109.044202

DOI icon Tom Beucler, ... Pierre Gentine
Climate-Invariant Machine Learning
Science Advances 2024 DOI: 10.1126/sciadv.adj7250

2023

DOI icon Abigail Bodner, Dhruv Balwada, Laure Zanna
A Data-Driven Approach for Parameterizing Submesoscale Vertical Buoyancy Fluxes in the Ocean Mixed Layer
Arxiv 2023. DOI: 10.48550/arXiv.2312.06972

DOI icon Cheng Zhang, Pavel Perezhogin, Cem Gultekin, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization Into a Numerical Ocean Circulation Model
James 2023. DOI: 10.1029/2023MS003697

DOI icon Pavel Perezhogin, Cheng Zhang, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation of a data-driven equation-discovery mesoscale parameterization into an ocean model
James 2023. DOI: 10.48550/arXiv.2311.02517

DOI icon Will Chapman and Judith Berner
Deterministic and stochastic tendency adjustments derivedfrom data assimilation and nudging
QJRMS 2023. DOI: 10.1002/qj.4652

DOI icon Christian Pedersen, Laure Zanna, Joan Bruna, Pavel Perezhogin
Reliable coarse-grained turbulent simulations through combined offline learning and neural emulation
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling DOI: 10.48550/arXiv.2307.13144

DOI icon Emily Newsom, Laure Zanna, Jonathan Gregory
Background Pycnocline depth constrains Future Ocean Heat Uptake Efficiency
AGU Geophysical Research Letters 2023. DOI: 10.1029/2023GL105673

DOI icon Sara Shamekh and Pierre Gentine
Learning Atmospheric Boundary Layer Turbulence
JAMES 2023. DOI: 10.22541/essoar.168748456.60017486/v1

DOI icon Aakash Sane, Brandon G. Reichl, Alistair Adcroft, Laure Zanna
Parameterizing vertical mixing coefficients in the Ocean Surface Boundary Layer using Neural Networks
JAMES 2023. DOI: 10.1029/2023MS003890

DOI icon Sungduk Yu, ..., Michael S. Pritchard
ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid
multi-scale climate simulators

NeurIPS 2023. DOI: 10.48550/arXiv.2306.08754

DOI icon Karan Jakhar, Yifei Guan, Rambod Mojgani, Ashesh Chattopadhyay, Pedram Hassanzadeh, Laure Zanna
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and Challenges.
ESS Open Archive. 2023. DOI: 10.22541/essoar.168677212.21341231/v1

DOI icon Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando, Georg Martius,
Emili Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz, Laure Zanna, Jakob Runge

Discovering Causal Relations and Equations from Data.
Physics Reports 2023. DOI: 10.1016/j.physrep.2023.10.005

DOI icon Rei Chemke and Janni Yuval
Human-induced weakening of the Northern Hemisphere tropical circulation
Nature. 2023. DOI: 10.1038/s41586-023-05903-1

DOI icon William Gregory, Mitchell Bushuk, Alistair Adcroft, Yongfei Zhang, Laure Zanna
Deep learning of systematic sea ice model errors from data assimilation increments
JAMES 2023. DOI: 10.1029/2023MS003757

DOI icon Janni Yuval and Paul A. O’Gorman
Neural-Network Parameterization of Subgrid Momentum Transport in the Atmosphere
JAMES 2023. DOI: 10.1029/2023MS003606

DOI icon Karl Otness, Laure Zanna, Joan Bruna
Data-driven multiscale modeling of subgrid parameterizations in climate models
Preprint accepted at ICLR Workshop on Climate Change AI. 2023. DOI: 10.48550/arXiv.2303.17496

DOI icon Fabrizio Falasca, Andrew Brettin, Laure Zanna, Stephen M. Griffies, Jianjun Yin, Ming Zhao
Exploring the non-stationarity of coastal sea level probability distributions
EDS. volume 2 2023. DOI: 10.1017/eds.2023.10

DOI icon Pavel Perezhogin, Laure Zanna, Carlos Fernandez-Granda
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
JAMES. 2023. DOI: 10.1029/2023MS003681

DOI icon Pavel Perezhogin, Andrey Glazunov
Subgrid Parameterizations of Ocean Mesoscale Eddies Based on Germano Decomposition
JAMES. 2023. DOI: 10.1029/2023MS003771

DOI icon Cheng Zhang, Pavel Perezhogin, Cem Gultekin, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization into a
Numerical Ocean Circulation Model

JAMES 2023. DOI: 10.1029/2023MS003697

DOI icon Qiyu Xiao, Dhruv Balwada, C. Spencer Jones, Mario Herrero-Gonzalez, K. Shafer Smith, Ryan Abernathey
Reconstruction of Surface Kinematics from Sea Surface Height Using Neural Networks
JAMES. 2023. DOI: 10.1029/2022MS003258

DOI icon Takaya Uchida, Dhruv Balwada, Quentin Jamet, William K. Dewar, Bruno Deremble,
Thierry Penduff, Julien Le Sommer

Cautionary tales from the mesoscale eddy transport tensor
ScienceDirect 2023. DOI: 10.1016/j.ocemod.2023.102172

DOI icon Adam Subel, Yifei Guan, Ashesh Chattopadhyay, Pedram Hassanzadeh
Explaining the physics of transfer learning in data-driven turbulence modeling
PNAS NEXUS 2023. DOI: 10.1093/pnasnexus/pgad015

DOI icon Lorenzo Zampieri, Gabriele Arduini, Marika Holland, Sarah Keeley, Kristian S. Mogensen,
Matthew D. Shupe, Steffen Tietsche

A Machine Learning Correction Model of the Winter Clear-Sky Temperature Bias over the Arctic Sea Ice in Atmospheric Reanalyses
AMS Journals, Monthy Weather Review: volume151, issue6 DOI: 10.1175/MWR-D-22-0130.1

DOI icon Lei Chen and Joan Bruna
On Gradient Descent Convergence beyond the Edge of Stability
ICLR 2023 DOI: 10.5555/3618408.3618580


2022

DOI icon Andrew Ross, Ziwei Li, Pavel Perezhogin, Carlos Fernandez-Granda, Laure Zanna
Benchmarking of machine learning ocean subgrid parameterizations in an idealized model
JAMES. 2022. DOI: 10.1029/2022MS003258

DOI icon Joan Bruna, Benjamin Peherstorfer, Eric Vanden-Eijnden
Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations
Journal of Computational Physics DOI: 10.1016/j.jcp.2023.112588

DOI icon Peidong Wang, Janni Yuval, Paul A. O'Gorman
Non-local parameterization of atmospheric subgrid processes with neural networks
JAMES 2022. DOI: 10.1029/2022MS002984

DOI icon Sara Shamekh, Kara D Lamb, Yu Huang, Pierre Gentine
Implicit learning of convective organization explains precipitation stochasticity
In review. 2022. DOI: 10.1002/essoar.10512517.1

DOI icon Hannah Christensen and Laure Zanna
Parametrization in Weather and Climate Models
Oxford Research Encyclopedia of Climate Science. 2022. DOI: 10.1093/acrefore/9780190228620.013.826

DOI icon Sheng Liu, Aakash Kaku, Haoxiang Huang, Laure Zanna, Weicheng Zhu, Narges Razavian,
Matan Leibovich, Sreyas Mohan, Boyang Yu, Jonathan Niles-Weed, Carlos Fernandez-Granda

Deep Probability Estimation
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:13746-13781, 2022.
DOI: 10.48550/arXiv.2111.10734

DOI icon Nora Loose, Ryan Abernathey, Ian Grooms, Julius Busecke, Arthur Guillaumin,
Elizabeth Yankovsky, Gustavo Marques, Jacob Steinberg, Andrew Slavin Ross, Hemant Khatri,
Scott Bachman, Laure Zanna, Paige Martin

GCM-Filters: A Python Package for Diffusion-based Spatial Filtering of Gridded Data
Journal of Open Source Software 7(70), p.3947. 2022. DOI: 10.21105/joss.03947

DOI icon Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, Redouane Lguensat
A posteriori learning for quasi-geostrophic turbulence parametrization
JAMES. 2022. DOI: 10.1029/2022MS003124

Publications Archive

DOI icon M²LInES funded research

2021 -